Cariñena Orthogonal Polynomials Are Jacobi Polynomials

نویسندگان

  • C. VIGNAT
  • P. W. LAMBERTI
چکیده

The relativistic Hermite polynomials (RHP) were introduced in 1991 by Aldaya et al. [3] in a generalization of the theory of the quantum harmonic oscillator to the relativistic context. These polynomials were later related to the more classical Gegenbauer (or more generally Jacobi) polynomials in a study by Nagel [4]. For this reason, they do not deserve any special study since their properties can be deduced from the properties of the well-known Jacobi polynomials a more general class of polynomials that includes Gegenbauer polynomials as underlined by Ismail in [6]. Recently, Cariñena et al. [2] studied an extension of the quantum harmonic oscillator on the sphere S2 and on the hyperbolic plane and they showed that the Schrdinger equation can be analytically solved; the solutions are an extension of the classical wavefunctions of the quantum harmonic oscillator where the usual Hermite polynomials are replaced by some new polynomials that we will call here Cariñena polynomials. In the next section, we show that these Cariñena polynomials are in fact Jacobi polynomials. The last section is devoted to the application of these results to the nonextensive context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The coefficients of differentiated expansions of double and triple Jacobi polynomials

Formulae expressing explicitly the coefficients of an expansion of double Jacobi polynomials which has been partially differentiated an arbitrary number of times with respect to its variables in terms of the coefficients of the original expansion are stated and proved. Extension to expansion of triple Jacobi polynomials is given. The results for the special cases of double and triple ultraspher...

متن کامل

Upward Extension of the Jacobi Matrix for Orthogonal Polynomials

Orthogonal polynomials on the real line always satisfy a three-term recurrence relation. The recurrence coefficients determine a tridiagonal semi-infinite matrix (Jacobi matrix) which uniquely characterizes the orthogonal polynomials. We investigate new orthogonal polynomials by adding to the Jacobi matrix r new rows and columns, so that the original Jacobi matrix is shifted downward. The r new...

متن کامل

Block Jacobi Matrices and Zeros of Multivariate Orthogonal Polynomials

A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.

متن کامل

Generalization of matching extensions in graphs-combinatorial interpretation of orthogonal and q-orthogonal polynomials

In this paper, we present generalization of matching extensions in graphs and we derive combinatorial interpretation of wide classes of orthogonal and q-orthogonal polynomials. Specifically, we assign general weights to complete graphs, cycles and chains or paths defining matching extensions in these graphs. The generalized matching polynomials of these graphs have recurrences defining various ...

متن کامل

Solving the fractional integro-differential equations using fractional order Jacobi polynomials

In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra  integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009